The maximum dimension of a Lie nilpotent subalgebra of $M_{n}(F)$ of index m

Michał Ziembowski

Warsaw University of Technology
Lens
June 13, 2017

Based on a joint work with J. van den Berg, J. Szigeti and L. van Wyk

M.Z. \quad Subalgebras of $M_{n}(F)$

- Problem: Give an example of a subalgebra of $M_{n}(F)$ which is commutative.
- Problem: Give an example of a subalgebra of $M_{n}(F)$ which is commutative.
- Take any pair (k_{1}, k_{2}) of positive integers satisfying $k_{1}+k_{2}=n$ and consider

- Problem: Give an example of a subalgebra of $M_{n}(F)$ which is commutative.
- Take any pair (k_{1}, k_{2}) of positive integers satisfying $k_{1}+k_{2}=n$ and consider

- $R=F I_{n}+J$
- $R=F I_{n}+J$
- $R=F I_{n}+J$
- $\operatorname{dim}_{F}(R)=1+k_{1} k_{2}$
- $R=F I_{n}+J$
- $\operatorname{dim}_{F}(R)=1+k_{1} k_{2}$
- (Schur 1905, Jacobson 1944) The dimension over a field F of any commutative subalgebra of $\mathbb{M}_{n}(F)$ is at most $\left\lfloor\frac{n^{2}}{4}\right\rfloor+1$, where \rfloor is the floor function.
- Let $k_{1}, k_{2}, \ldots, k_{m+1}$ be a sequence of positive integers such that $k_{1}+k_{2}+\cdots+k_{m+1}=n$.
- Let $k_{1}, k_{2}, \ldots, k_{m+1}$ be a sequence of positive integers such that $k_{1}+k_{2}+\cdots+k_{m+1}=n$.
- Let
- Let $k_{1}, k_{2}, \ldots, k_{m+1}$ be a sequence of positive integers such that $k_{1}+k_{2}+\cdots+k_{m+1}=n$.
- Let

- Let $R=F I_{n}+J$ ("TYPICAL EXAMPLE")
- Let $k_{1}, k_{2}, \ldots, k_{m+1}$ be a sequence of positive integers such that $k_{1}+k_{2}+\cdots+k_{m+1}=n$.
- Let

- Let $R=F I_{n}+J \quad$ ("TYPICAL EXAMPLE")
- Obviously: $J(R)=J, J^{m+1}=0$, and R is local.

$$
\begin{aligned}
\operatorname{dim}_{F} R= & k_{1}\left(n-k_{1}\right)+k_{2}\left(n-k_{1}-k_{2}\right)+\cdots \\
& +k_{m}\left(n-k_{1}-k_{2}-\cdots-k_{m}\right)+1 \\
= & \sum_{i, j=1, i<j}^{m+1} k_{i} k_{j}+1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{dim}_{F} R= & k_{1}\left(n-k_{1}\right)+k_{2}\left(n-k_{1}-k_{2}\right)+\cdots \\
& +k_{m}\left(n-k_{1}-k_{2}-\cdots-k_{m}\right)+1 \\
= & \sum_{i, j=1, i<j}^{m+1} k_{i} k_{j}+1
\end{aligned}
$$

$$
\begin{aligned}
& M(\ell, n) \stackrel{\text { def }}{=} \max \left\{\sum_{i, j=1, i<j}^{\ell} k_{i} k_{j}+1: k_{1}, k_{2}, \ldots, k_{\ell}\right. \text { are } \\
&\text { nonnegative integers such that } \left.\sum_{i=1}^{\ell} k_{i}=n\right\} .
\end{aligned}
$$

- If ℓ and n are positive integers with $\ell>n$, then $M(\ell, n)=\frac{1}{2}\left(n^{2}-n\right)+1$.
- If ℓ and n are positive integers with $\ell>n$, then $M(\ell, n)=\frac{1}{2}\left(n^{2}-n\right)+1$.
- Let $\ell \leqslant n$ and

$$
n=\left\lfloor\frac{n}{\ell}\right\rfloor \ell+r .
$$

- If ℓ and n are positive integers with $\ell>n$, then

$$
M(\ell, n)=\frac{1}{2}\left(n^{2}-n\right)+1
$$

- Let $\ell \leqslant n$ and

$$
n=\left\lfloor\frac{n}{\ell}\right\rfloor \ell+r .
$$

- We get $M(\ell, n)$ for the sequence $\left(k_{1}, k_{2}, \ldots, k_{\ell}\right) \in \mathbb{N}_{0}^{\ell}$ defined in the following way:

$$
k_{i} \stackrel{\text { def }}{=}\left\{\begin{array}{l}
\left\lfloor\frac{n}{\ell}\right\rfloor, \text { for } 1 \leqslant i \leqslant \ell-r \\
\left\lfloor\frac{n}{\ell}\right\rfloor+1, \text { for } \ell-r<i \leqslant \ell
\end{array}\right.
$$

- Let \mathfrak{L} be a Lie algebra and let $x_{1}, x_{2}, \ldots, x_{m}$ be a finite sequence of elements in \mathfrak{L}.
- Let \mathfrak{L} be a Lie algebra and let $x_{1}, x_{2}, \ldots, x_{m}$ be a finite sequence of elements in \mathfrak{L}.
- Define element $\left[x_{1}, x_{2}, \ldots, x_{m}\right]^{*}$ of \mathfrak{L} recursively as follows

$$
\begin{gathered}
{\left[x_{1}\right]^{*} \stackrel{\text { def }}{=} x_{1}, \text { and }} \\
{\left[x_{1}, x_{2}, \ldots, x_{m}\right]^{*} \stackrel{\text { def }}{=}\left[\left[x_{1}, x_{2}, \ldots, x_{m-1}\right]^{*}, x_{m}\right], \text { for } m>1 .}
\end{gathered}
$$

- Let \mathfrak{L} be a Lie algebra and let $x_{1}, x_{2}, \ldots, x_{m}$ be a finite sequence of elements in \mathfrak{L}.
- Define element $\left[x_{1}, x_{2}, \ldots, x_{m}\right]^{*}$ of \mathfrak{L} recursively as follows

$$
\begin{gathered}
{\left[x_{1}\right]^{*} \stackrel{\text { def }}{=} x_{1}, \text { and }} \\
{\left[x_{1}, x_{2}, \ldots, x_{m}\right]^{*} \stackrel{\text { def }}{=}\left[\left[x_{1}, x_{2}, \ldots, x_{m-1}\right]^{*}, x_{m}\right] \text {, for } m>1 .}
\end{gathered}
$$

- The Lower Central Series $\left\{\mathfrak{L}_{[m]}\right\}_{m \in \mathbb{N}}$ of \mathfrak{L} is defined by

$$
\mathfrak{L}_{[m]} \stackrel{\text { def }}{=}\left\{\left[x_{1}, x_{2}, \ldots, x_{m}\right]^{*}: x_{i} \in \mathfrak{L} \text { for } 1 \leqslant i \leqslant m\right\} .
$$

- Let \mathfrak{L} be a Lie algebra and let $x_{1}, x_{2}, \ldots, x_{m}$ be a finite sequence of elements in \mathfrak{L}.
- Define element $\left[x_{1}, x_{2}, \ldots, x_{m}\right]^{*}$ of \mathfrak{L} recursively as follows

$$
\begin{gathered}
{\left[x_{1}\right]^{*} \stackrel{\text { def }}{=} x_{1}, \text { and }} \\
{\left[x_{1}, x_{2}, \ldots, x_{m}\right]^{*} \stackrel{\text { def }}{=}\left[\left[x_{1}, x_{2}, \ldots, x_{m-1}\right]^{*}, x_{m}\right], \text { for } m>1}
\end{gathered}
$$

- The Lower Central Series $\left\{\mathfrak{L}_{[m]}\right\}_{m \in \mathbb{N}}$ of \mathfrak{L} is defined by

$$
\mathfrak{L}_{[m]} \stackrel{\text { def }}{=}\left\{\left[x_{1}, x_{2}, \ldots, x_{m}\right]^{*}: x_{i} \in \mathfrak{L} \text { for } 1 \leqslant i \leqslant m\right\} .
$$

- Definition: We say \mathfrak{L} is nilpotent if $\mathfrak{L}_{[m]}=0$ for some $m \in \mathbb{N}$, $m>1$, and more specifically, nilpotent of index m, if $\mathfrak{L}_{[m+1]}=0$.
- Every ring R may be endowed with the structure of a Lie algebra (over the centre of R), by choosing as bracket the commutator defined by

$$
\forall r, s \in R,[r, s] \stackrel{\text { def }}{=} r s-s r .
$$

- Every ring R may be endowed with the structure of a Lie algebra (over the centre of R), by choosing as bracket the commutator defined by

$$
\forall r, s \in R,[r, s] \stackrel{\text { def }}{=} r s-s r .
$$

- We call a ring R Lie nilpotent [resp. Lie nilpotent of index m] if R, considered as a Lie algebra via the commutator, is nilpotent [resp. nilpotent of index m].
- Every ring R may be endowed with the structure of a Lie algebra (over the centre of R), by choosing as bracket the commutator defined by

$$
\forall r, s \in R,[r, s] \stackrel{\text { def }}{=} r s-s r .
$$

- We call a ring R Lie nilpotent [resp. Lie nilpotent of index m] if R, considered as a Lie algebra via the commutator, is nilpotent [resp. nilpotent of index m].
- Observe that the commutative rings are precisely the rings that are Lie nilpotent of index 1 .
- Every ring R may be endowed with the structure of a Lie algebra (over the centre of R), by choosing as bracket the commutator defined by

$$
\forall r, s \in R,[r, s] \stackrel{\text { def }}{=} r s-s r .
$$

- We call a ring R Lie nilpotent [resp. Lie nilpotent of index m] if R, considered as a Lie algebra via the commutator, is nilpotent [resp. nilpotent of index m].
- Observe that the commutative rings are precisely the rings that are Lie nilpotent of index 1 .
- "TYPICAL EXAMPLE" is an algebra which is Lie nilpotent of index m.
- Conjecture. (J. Szigeti, L. van Wyk) Let F be any field, m and n positive integers, and R an F-subalgebra of $\mathbb{M}_{n}(F)$ with Lie nilpotence index m. Then

$$
\operatorname{dim}_{F} R \leqslant M(m+1, n)
$$

Theorem 1. Let \mathcal{C} be a nonempty class of fields and $\overline{\mathcal{C}}$ the class of all subfields of fields in \mathcal{C}. The following statements are equivalent:
(a)The Conjecture holds in respect of all fields in \mathcal{C};
(b)The Conjecture holds in respect of all fields in $\overline{\mathcal{C}}$.

Theorem 2. The following statements are equivalent for an algebraically closed field F :

- The Conjecture holds in respect of F;

Theorem 2. The following statements are equivalent for an algebraically closed field F :

- The Conjecture holds in respect of F;
- For all positive integers m and n, if R is any F-subalgebra of $\mathbb{U}_{n}^{*}(F)$ (upper triangular $n \times n$ matrices over F with constant main diagonal) with Lie nilpotence index m, then

$$
\operatorname{dim}_{F} R \leqslant M(m+1, n)
$$

- Let R be an F-subalgebra of $\mathbb{U}_{n}^{*}(F)$.
- Let R be an F-subalgebra of $\mathbb{U}_{n}^{*}(F)$.
- Let V be a faithful right R-module (for example $V=F^{n}$).
- Let R be an F-subalgebra of $\mathbb{U}_{n}^{*}(F)$.
- Let V be a faithful right R-module (for example $V=F^{n}$).
- We define the following sequences $\left\{R_{k}\right\}_{k \in \mathbb{N}},\left\{J_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{U_{k}\right\}_{k \in \mathbb{N}}$:
- Let R be an F-subalgebra of $\mathbb{U}_{n}^{*}(F)$.
- Let V be a faithful right R-module (for example $V=F^{n}$).
- We define the following sequences $\left\{R_{k}\right\}_{k \in \mathbb{N}},\left\{J_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{U_{k}\right\}_{k \in \mathbb{N}}$:
-

$$
\left\{\begin{array}{l}
R_{1} \stackrel{\text { def }}{=} R, \\
J_{1} \stackrel{\text { def }}{=} J\left(R_{1}\right), \text { and } \\
U_{1} \stackrel{\text { def }}{=} \text { any } F \text {-subspace complement of } V J_{1} \text { in } V .
\end{array}\right.
$$

- Let R be an F-subalgebra of $\mathbb{U}_{n}^{*}(F)$.
- Let V be a faithful right R-module (for example $V=F^{n}$).
- We define the following sequences $\left\{R_{k}\right\}_{k \in \mathbb{N}},\left\{J_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{U_{k}\right\}_{k \in \mathbb{N}}$:
-

$$
\left\{\begin{array}{l}
R_{1} \stackrel{\text { def }}{=} R, \\
J_{1} \stackrel{\text { def }}{=} J\left(R_{1}\right), \text { and } \\
U_{1} \stackrel{\text { def }}{=} \text { any } F \text {-subspace complement of } V J_{1} \text { in } V .
\end{array}\right.
$$

- For $k \in \mathbb{N}, k \geqslant 2$, define

$$
\left\{\begin{array}{c}
R_{k} \stackrel{\text { def }}{=} F I_{n}+\left(0:^{R_{k-1}} U_{k-1}\right), \\
J_{k} \stackrel{\text { def }}{=} J\left(R_{k}\right), \text { and } \\
U_{k} \stackrel{\text { def }}{=} \text { any } F \text {-subspace comp } \\
V J_{1} J_{2} \ldots J_{k-1} .
\end{array}\right.
$$

- Obviously, $R_{1} \supseteq R_{2} \supseteq \cdots$, and $J_{1} \supseteq J_{2} \supseteq \cdots$
- Obviously, $R_{1} \supseteq R_{2} \supseteq \cdots$, and $J_{1} \supseteq J_{2} \supseteq \cdots$
- Define

$$
\ell \stackrel{\text { def }}{=} \min \left\{k \in \mathbb{N}: J_{1} \ldots J_{k}=0\right\}
$$

- Obviously, $R_{1} \supseteq R_{2} \supseteq \cdots$, and $J_{1} \supseteq J_{2} \supseteq \cdots$
- Define

$$
\ell \stackrel{\text { def }}{=} \min \left\{k \in \mathbb{N}: J_{1} \ldots J_{k}=0\right\} .
$$

- Theorem 3. Let the sequences $\left\{R_{k}\right\}_{k \in \mathbb{N}},\left\{J_{k}\right\}_{k \in \mathbb{N}}$ and $\left\{U_{k}\right\}_{k \in \mathbb{N}}$ be defined as above, and let ℓ be as above. Then:
(i) $\operatorname{dim}_{F} R \leqslant M\left(\ell, \operatorname{dim}_{F} V\right)$.
(ii) If R is Lie nilpotent of index m, then $\ell \leqslant m+1$

Theorem 4. (J. van den Berg, J. Szigeti, L. van Wyk and M.Z.)
Let F be any field, m and n positive integers, and R an F-subalgebra of $\mathbb{M}_{n}(F)$ with Lie nilpotence index m. Then

$$
\operatorname{dim}_{F} R \leqslant M(m+1, n)
$$

PROBLEM: Every ring R that is Lie nilpotent of index m, is also Lie solvable of index m. Thus, it is natural to ask about the maximal dimension of Lie solvable of index m subalgebras of $M_{n}(F)$.

Thank you for your attention!

